博客
关于我
R_R语言做主成分分析
阅读量:72 次
发布时间:2019-02-25

本文共 558 字,大约阅读时间需要 1 分钟。

首先,我们需要加载必要的库以支持后续的数据分析操作。代码如下:

library(psych)

接下来,我们从iris数据集中获取前四列数据,用于进行主成分分析。代码如下:

mydata <- iris[,1:4]

为了确定最优的主成分个数,我们可以使用scree plot方法。代码如下:

mydata.screePlotsModel <- fa.parallel(mydata, fa="pc", n.iter=100, show.legend=F, main="Scree Plot Analysis")

通过上述代码,我们可以得到最优的主成分个数。代码如下:

n <- mydata.screePlotsModel$ncomp

接下来,我们对数据进行主成分分析。代码如下:

mydata.pr <- princomp(mydata, scores=T, cor=TRUE)

为了直观地展示主成分分析结果,我们可以绘制scree plot图。代码如下:

screeplot(mydata.pr, type="line", main="Scree Plot", lwd=2)

最后,我们可以对主成分分析结果进行摘要,以获取更多详细信息。代码如下:

summary(mydata.pr, loadings=TRUE)

转载地址:http://kie.baihongyu.com/

你可能感兴趣的文章
NutUI:京东风格的轻量级 Vue 组件库
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>
NUUO网络视频录像机 upload.php 任意文件上传漏洞复现
查看>>
Nuxt Time 使用指南
查看>>
NuxtJS 接口转发详解:Nitro 的用法与注意事项
查看>>
NVDIMM原理与应用之四:基于pstore 和 ramoops保存Kernel panic日志
查看>>
NVelocity标签使用详解
查看>>
NVelocity标签设置缓存的解决方案
查看>>
Nvidia Cudatoolkit 与 Conda Cudatoolkit
查看>>
NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
查看>>