博客
关于我
R_R语言做主成分分析
阅读量:72 次
发布时间:2019-02-25

本文共 558 字,大约阅读时间需要 1 分钟。

首先,我们需要加载必要的库以支持后续的数据分析操作。代码如下:

library(psych)

接下来,我们从iris数据集中获取前四列数据,用于进行主成分分析。代码如下:

mydata <- iris[,1:4]

为了确定最优的主成分个数,我们可以使用scree plot方法。代码如下:

mydata.screePlotsModel <- fa.parallel(mydata, fa="pc", n.iter=100, show.legend=F, main="Scree Plot Analysis")

通过上述代码,我们可以得到最优的主成分个数。代码如下:

n <- mydata.screePlotsModel$ncomp

接下来,我们对数据进行主成分分析。代码如下:

mydata.pr <- princomp(mydata, scores=T, cor=TRUE)

为了直观地展示主成分分析结果,我们可以绘制scree plot图。代码如下:

screeplot(mydata.pr, type="line", main="Scree Plot", lwd=2)

最后,我们可以对主成分分析结果进行摘要,以获取更多详细信息。代码如下:

summary(mydata.pr, loadings=TRUE)

转载地址:http://kie.baihongyu.com/

你可能感兴趣的文章
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
nnU-Net 终极指南
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>